新闻资讯

工业冷水机组设计与节能方案

2016-05-09 10:35:35 661

    在当今世界上充满着“能源紧缺”的时刻,“节能”问题已成为世界各国最关心的首要问题,也是我国政府和研究部门广大科学工作者探计 中最注重的一环。各国政府都积极地颁布“节能”的法令、法规,已把节能问题列入考察监定和衡量一个建筑工程优劣的首要标准之一。一些发达国家空调工程的能 耗,已占据建筑物总能耗的6O~70%。我国也占据50~60%。

    所以,如何在工业冷水机组工程设计与运行中节能,已成为广大暖通空调与建筑专业设计工程师和运行管理人员的迫切任务。我国能源方针是“节能,与能 源开发并重,并把节约能源放大优先的地位。空调工程的节能主要包括:节电、节水、节省冷量和热量.而空调制冷系统的能耗据考核已占空调工程能耗的一半以 上。

    在电信枢纽楼工程中由于工艺设备发热量大,空调负荷比较大,且要求空调系统连续运行,空调制冷系统的能耗占据整个空调工程能耗的65%以上。因此,空调对制冷系统采取最佳的节能方案是至关重要的向题。

    1、目前制冷系统节能指标

    制冷系统的节能指标,意指在规定的参数,如:低温冷水机组冷冻水进、出水温度,冷却水进、出水温度,室内外环境空气的温度、湿度……,在这些 条件下,每生产1kw的制冷量所耗用能量应为最小,按目前的节能指标:每生产lkW制冷量的耗电量不得大于0.213kW,或每产生一美国冷吨制冷量的耗 电不得大于0.75kw。用以上这个能耗指标来控制空调工程设计。

    然而,空调的制冷系统仅仅考虑在设计工况下,即在满负荷条件下运行时的能耗指标是不够的,还应考虑空调制冷系统在部分负荷下运行的节能问题。

    2、空调制冷系统在部分负荷下运行的概率

    一般空调制冷系统的设计都是以最大负荷为设计工况,但在实际运行中,所有的因素综合与设计工况相符合的情况是比较少的,因此空调制冷系统 常常会在部分负荷下运行。据统计,空调制冷系统在满负荷情况下运行只占20~30%,在70~80%的时间是在部分负待下运行。这就给空调设计工程师们提 出了一个新问题,在部分负荷运行情况下如何设计才能使空调制冷系统符合节能的原则。这比在设计工况下提出能耗指标更为重要。

    3、离心式冷水机组运行时的节能特性

    离心式冷水机缎的工作效率,除了考虑离心式压缩机本身的效率外,还与冷凝器和蒸发器的换热效率有关,所以判断离心式冷水组的效率应该判断 离心式压缩机及冷凝器和燕发器的综合效率,这就为离心式冷水机组在部分负荷情况下的运行如何节能创造了条件。从各厂家离心式冷水机组运行特性曲线看,发现 各种系列冷水机组特性曲线基本相同,差别很小。以本公司生产制冷量650Rt/h的离心式冷水机组特性曲线为例,在部分负荷运行,节能情况列人表 1。

    从表1数据可以看出负荷在100%~40%之间随着负荷的下降,每产生1kw冷量的耗电比满负荷时少,而负荷在10%~40%时,随着负 荷的下降每产生1kw冷量的耗电均比满负荷大,因此,为了“节能”必须将冷水机组控制在100%~40%之间运行。

    4、在部分负荷下运行时离式冷水机组的节能状况对于冷水机组侧来说,冷水机组在部分负荷下运行就是通过改变人口导向翼的启闭调节制冷剂的循环量,也就是当负荷下降时在蒸发器中需要蒸发 吸热的制冷剂量减少了,则意味着增大了蒸发器的热交换面积,即降低了蒸发器单位面积上的蒸发强度,这就大大提高了蒸发器的热效率。【低温冷冻机

    离心式冷水机组在水一侧的负荷为:

    Q=G*Δt*C (1)

    式中:Q—离心式冷水机组的负荷w/h或kcal/h,

    G—流经蒸发器的冷冻水量kg/h,

    C&mdas

    h;冷冻水的比热,清水C=1

    Δt—T2-T1,由负荷要求决定的,一般空调用冷冻水Δt =5℃,T1—蒸发器出水温度,℃,一般T1=7C,

    T2—为蒸收器进水温度,℃,一般T2=120C。

    由上面式(1)中可知,如负荷Q发生变化,则式(1)中的唯一变量是冷冻水量G,只有一台冷水机组的冷冻水系统,当负荷Q增大时,冷冻水 量G增大,当负荷降低时冷冻水量G也随之减少,由此可知,冷冻水量应随负荷的变化而变化,因为冷冻水量G的变化会使冷水机组在部分负荷下运行带来显著的节 能效果。这一论点就是离心式冷水机“节能”的理论依据。

    目前冷水机组各设备厂,控制系统均能保证离心式冷水机组的负荷在100%一10%间随空调末端负荷的变化而变化,冷水机组的耗电量也随负 荷变化而变化,以达到“节能”的要求。对于设备厂家最关心是,用最快最简便的方法测出冷水机组耗电量随负荷的变化的精确结果,而对于冷冻水循环泵,冷却水 循环泵的耗电量大小并不关心。对于设计者来讲最关心的应是冷冻水量G的变化。因为G的变化可以给冷冻水制冷系统带来显著的“节能”效果。